This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Synthesis of Some Pyridine Ribosides and Their Biological Activity

Adel M. Attla^{ab}; Hanaa A. Mansour^a; Ahmed A. Almehdi^c; Mohammed M. Abbasi^c
^a Department of Chemistry, Faculty of Education, Tanta University, Kafr, El-Sheikh, Egypt ^b
Department of Chemistry, Faculty of Science, Qatar University, Doha, State of Qatar ^c Department of Chemistry, Faculty of Science, UAE University, Al-Ain, United Arab Emirates

To cite this Article Attla, Adel M., Mansour, Hanaa A., Almehdi, Ahmed A. and Abbasi, Mohammed M.(1999) 'Synthesis of Some Pyridine Ribosides and Their Biological Activity', Nucleosides, Nucleotides and Nucleic Acids, 18: 10, 2301 — 2306

To link to this Article: DOI: 10.1080/07328319908044882 URL: http://dx.doi.org/10.1080/07328319908044882

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS OF SOME PYRIDINE RIBOSIDES AND THEIR BIOLOGICAL ACTIVITY

Adel M. Attia** and Hanaa A. Mansour

Department of Chemistry, Faculty of Education, Tanta University, Kafr El- Sheikh, Egypt.

Ahmed A. Almehdi and Mohammed M. Abbasi*

Department of Chemistry, Faculty of Science, UAE University, Al-Ain, United Arab Emirates.

Abstract: A synthesis of 1-(β -D-ribofuranosyl)-pyridin-2-thiones *via* reaction of 3-cyanopyridin-2(1*H*)-thiones with 2,3,5-tri-*O*-benzoyl-D-ribofuranosyl bromide under basic conditions, followed by hydrolysis with methanolic ammonia is reported.

A number of dideoxy- and deaza-pyrimidine nucleosides have been synthesized as potential antiviral agents. Among them, 3'-azido-3'-deoxythymidine (AZT), 2',3'-dideoxyinosine (DDI) and 2',3'-dideoxycytidine (DDC) have been introduced in clinical use for the treatment of HIV infection diseases. As a part of our program directed toward the synthesis of nucleosides and nucleotides with considerable biological and medicinal activity, we report here the synthesis of some 3-deazapyrimidine ribosides. Thus, it has been reported that the reaction of α -cyanothioacetamide with chalcones in boiling ethanol containing a catalytic amount of piperidine gave 4,6-disubstituted-3-cyanopyridin-2(1*H*)-thiones 1. 8-9 Compounds 1 reacted with 2,3,5-tri- α -benzoyl-D-ribofuranosyl bromide 3 in the presence of potassium hydroxide in acetone-water mixture to give the corresponding *N*-ribosides 4 (method A). Compounds 4 could also be obtained by the reaction of 1 with silver nitrate in aqueous

^{*} Present Address: Department of Chemistry, Faculty of Science, Qatar University, P.O. Box 2713, Doha, State of Qatar

2302 ATTIA ET AL.

acetone, followed by coupling of the resultant silver salt with 3 at room temperature (method B). Although the coupling of 1 with the ribosyl bromide 3 could also give the corresponding thioribosides, the formation of 4 was proved chemically. Reaction of 1 with hexamethyldisilazane (HMDS) in the presence of ammonium sulphate gave the corresponding 2-trimethylsilylthiopyridines 5, which were subsequently treated with 1-O-acetyl-2,3,5-tri-Obenzoyl-β-D-ribofuranose 6 in the presence of SnCl₄ according to the method of Vorbruggen et al. 10-12 to afford the corresponding N-ribosides 4 (method C). The structures of the ribosides 4 were identified using elemental analysis and spectral data. The ¹H-NMR spectrum of 4b showed a doublet at δ 5.90 (J 8.06 Hz) assigned to the anomeric proton of the ribose moiety, which is strongly indicative of the β-configuration. On the other hand, the methyl protons of the aglycone resonate at δ 2.28, in addition to the pyridine H-5 singlet at δ 7.48. The UV spectrum of 4b proved that the reaction had led selectively to the formation of Nribosides. Thus whereas the S-methyl derivative of 1b showed one maximum at 278 nm, its N-riboside 4b exhibited two maxima at 282 and 330 nm. The removal of the benzoyl groups accomplished by the treatment of 4 with methanolic ammonia to furnish 1-(β-Dribofuranosyl)-pyridin-2-thiones 7. The ¹H-NMR spectrum of 7c showed the anomeric proton as a doublet at δ 6.08 (J 7.86 Hz), indicating the presence of only the β -D-ribofuranose. The ¹³C-NMR spectrum of 7c was characterized by a signal at δ 91.3 corresponding to the C-1 atom of β-D-ribofuranose. Another four signals at δ 60.6, 68.7, 74.5, and 85.2 were assigned to C-5', C-3', C-2', and C-4' of the ribose moiety, respectively. The ribosides obtained through these results constitute an important and versatile class of compounds for potential application in the synthesis of other carbohydrate derivatives.

The compounds 4_{a-d} and 7_{a-d} were evaluated for their inhibitory effect on Human Immunodeficiency Virus type 1 (HIV-1) induced cytopathogenicity in human T-Lymphocyte (MT-4) cells. None of the compounds tested proved inhibitory to the cytopathogenicity of HIV-1 at a concentration of 100 μ g/mL. None of the compounds showed cytotoxicity at this concentration. They were also devoid of any activity against different types of tumor virus.

Experimental

All evaporations were carried out under reduced pressure at 40 °C. Melting points are uncorrected. TLC was carried out on aluminum sheet silica gel 60 F₂₅₄ (Merck) detected by short UV light. IR Spectra were obtained (KBr) using a Pye Unicam spectra 1000. ¹H-NMR and ¹³C-NMR spectra were measured on a Varian Gemini 200 MHz spectrometer in CDCl₃ or DMSO-d₆ using SiMe₄ as internal standard. Analytical data obtained from the Microanalytical Center at Cairo University.

$$R^{1}$$
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{4}
 R^{4

2304 ATTIA ET AL.

1-(2,3,5-Tri-O-benzoyl- β -D-ribofuranosyl)-3-cyano-4,6-disubstituted-pyridin-2-thiones 4 **Method A:** To a solution of 3-cyano-4,6-disubstituted-pyridin-2(1H) thiones 1 (0.01mol) in aqueous potassium hydroxide [0.56 g (0.01mol) in 6 mL of distilled water], a solution of 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide 3 (0.011 mol) in acetone (30 mL) was added The reaction mixture was stirred at room temperature until completion (TLC, 4 to 6 h), using chloroform: petroleum ether 9:1 v/v (Rf, 0.66-0.68), then evaporated under reduced pressure at 40 °C and the residue was washed with distilled water to remove the formed potassium bromide. The resulting product was dried and crystallized from ethanol to give the products 4a-d in 62-65 % yield.

Method B: To a solution of 3-cyano-4,6-disubstituted-pyridin-2(1*H*) thiones 1 (0.01 mol) in aqueous silver nitrate (0.01 mol in 6 mL of distilled water) and 10 mL acetone, a solution of 2,3,5-tri-*O*-benzoyl-D-ribofuranosyl bromide 3 (0.011 mol) in acetone (20 mL) was added. The reaction mixture was stirred at room temperature until judged complete by TLC (20 to 24 h). The reaction mixture was filtered to remove unreacted base, and the filtrate was evaporated under reduced pressure at 40 °C. The solid product was dried and crystallized from ethanol to give the products **4a-d** in 40-43 % yield.

Method C: 3-Cyano-4,6-disubstituted-pyridin-2(1*H*)-thione 1 (0.01 mol) was boiled under reflux with stirring, under anhydrous conditions for 48 hours with hexamethyldisilazane (25 mL) and ammonium sulphate (0.02 g). The excess of hexamethyldisilazane was removed under diminished pressure, providing the silylated bases 5 as a colorless oil. To a solution of silylated base in dry acetonitrile (30 mL) was added a solution of 1-*O*-acetyl-2,3,5-tri-*O*-benzoyl-β-D-ribofuranose 6 (0.011 mol) in dry acetonitrile (20 mL), followed by SnCl₄ (1.6 mL), The reaction mixture was stirred at room temperature until judged complete by TLC (6 to 8 h), then poured into saturated NaHCO₃ solution and extracted with CHCl₃. The organic layers were dried over MgSO₄, filtered and concentrated to give the crude product which was crystallized from ethanol to give the products 4a-d in 28-32 % yield.

4a: Yield 62%, mp 115 °C; IR 2212(CN), 1728(CO) cm⁻¹; m/z 766.5 (Found: C,68.8; H,3.9; N,3.9. C₄₄H₃₁ClN₂SO₇ requires C,68.9; H,4.0; N,3.9%).

4b: Yield 64%, mp 126 °C; IR 2215(CN), 1726(CO) cm⁻¹; ¹H-NMR δ 2.28 (s,3H,CH₃), 4.55(m,2H,2H-5'), 4.84(m,1H,H-4'), 5.71(d,1H,H-3'), 5.79(d,1H,H-2'), 5.90(d,J_{1'-2'}= 8.06 Hz,1H,H-1'), 7.35(m,3H,Ar-H), 7.48(s,1H, pyridine H-5), 7.58-7.72 (m,15H,Ar-H), 7.85 (d, 2H,Ar-H), 7.94(d,2H,Ar-H), 8.02(d,2H,Ar-H); m/z 746(Found: C, 72.2; H,4.5; N,3.7. C₄₅H₃₄N₂SO₇ requires C,72.4; H,4.6; N,3.8%).

4c: Yield 65%, mp 175 °C; IR 2211(CN), 1725(CO) cm⁻¹; m/z 776(Found: C,71.0; H,4.5; N,3.7. $C_{46}H_{36}N_2SO_8$ requires C,71.1; H,4.6; N,3.6%).

PYRIDINE RIBOSIDES 2305

4d: Yield 64%, mp 130 °C; IR 2218(CN), 1730(CO) cm⁻¹; ¹H-NMR δ 2.32 (s,3H,CH₃), 4.50(m,2H,2H-5'), 4.86(m,1H,H-4'), 5.71(d,1H,H-3'), 5.79(d,1H,H-2'), 5.98(d,J_{1'-2'}= 7.90 Hz,1H,H-1'), 6.86(m,1H, furan H-4), 7.18(d,1H, furan H-3), 7.35(d,2H,Ar-H), 7.48(s,1H, pyridine H-5), 7.68-7.80(m,15H,Ar-H), 8.12(m,1H, furan H-5 and 2H,Ar-H); m/z 736(Found: C,70.0; H,4.4; N,3.7. C₄₃H₃₂N₂SO₈ requires C,70.1; H,4.3; N, 3.8%).

1-($\beta\text{-D-Ribofuranosyl})\text{-3-cyano-4,6-disubstituted-pyridin-2-thiones 7.}$ General procedure .

Dry gaseous ammonia was passed through a solution of protected nucleoside 4 (0.5 g) in dry methanol (20 mL) at 0 $^{\circ}$ C for 0.5 h. The reaction mixture was stirred till complete as shown by TLC (36-40 h) using CHCl₃: MeOH 9:1 ν : ν (Rf, 0.68-0.70). The resulting mixture was then concentrated under reduced pressure to afford a solid residue that was crystallized from methanol to furnish colorless crystals.

7a: Yield 76%, mp 240 °C; IR 3660-3428(OH), 2212(CN)cm⁻¹; m/z 454.5 (Found: C, 60.9; H,4.0; N,6.1. $C_{23}H_{19}C1N_{2}SO_{4}$ requires C,60.7; H,4.2; N,6.2%).

7b: Yield 74%, mp 215 °C; IR 3660-3430(OH), 2212(CN) cm⁻¹; ¹H-NMR δ 2.30(s,3H,CH₃), 3.20-3.78(m,5H,2H-5`,H-4`,H-3`, and H-2`), 4.04(m,1H,3`-OH), 5.20(d,1H,5`-OH), 5.64(t, 1H,2`-OH), 5.96(d,J_{1'-2'} = 7.78 Hz,1H,H-1`), 7.36(d,2H,Ar-H), 7.58(s,1H, pyridine H-5), 7.72(m,5H,Ar-H), 7.96(d,2H,Ar-H); m/z 434 (Found: C,66.5; H,5.3; N,6.6. C₂₄H₂₂N₂SO₄ requires C,66.4; H,5.1; N, 6.5%).

7c: Yield 77%, mp 245 °C; IR 3668-3438(OH), 2218(CN)cm⁻¹; ¹H-NMR δ 2.36(s,3H,CH₃), 3.28-3.84(m,5H,2H-5',H-4',H-3' and H-2'), 3.88(s,3H,OCH₃), 4.48(m,1H,3'-OH), 4.84(m, 1H,5'-OH), 5.66(t,1H,2'-OH), 6.08(d,J_{1'-2'} = 7.86 Hz,1H,H-1'), 7.18(d,2H,Ar-H), 7.36(d, 2H,Ar-H), 7.62(s,1H, pyridine H-5), 7.78(d,2H,Ar-H), 8.05(d,2H,Ar-H); ¹³C-NMR δ 23.7(CH₃), 55.6(OCH₃), 60.6(C5'), 68.7(C3'), 74.5(C2'), 85.2(C4'), 91.3(C1'), 110.2(C3), 115.4(CN), 126.7-140.3(Ar-C), 145.8(C5), 147.2(C4), 157.1(C6), 171.1(C2); m/z 464 (Found: C,64.6; H,5.1; N,5.9. C₂₅H₂₄N₂SO₅ requires C,64.7; H,5.2; N,6.0%).

7d: Yield 75%, mp 230 °C; IR 3662-3430(OH), 2210(CN) cm⁻¹; m/z 424 (Found: C,62.2; H,4.8; N,6.8. C₂₂H₂₀N₂SO₅ requires C,62.3; H,4.7; N,6.6%).

Acknowledgment

The authors are greatly indebted to Dr. J. P. Bader, Dr. V. L. Narayanan and Dr. M. R. Boyd, AIDS Department & Drug Synthesis and Chemistry branch of Health and Human Services, NIH for their valuable *in vitro* anti-HIV and antitumor activity studies for our samples.

2306 ATTIA ET AL.

REFERENCES

- 1. C. Perigaud, G. Gosselin, J. Imbach, Nucleosides Nucleotides, 1992, 11, 903.
- J. Balzarini, M. Baba, R. Pauwels, P. Herdewijn, E. De Clercq, Biochem. Pharmacol., 1988, 37, 2847.
- 3. R. Coop, V. E. Marquez, J. Med. Chem., 1991, 34, 208.
- 4. A. M. Attia, G. H. Elgemeie, Phosphorus, Sulfur and silicon, 1994, 92, 95.
- A. M. Attia, E. I. Ibrahim, F. E. Hay, M. M. Abbasi, H. A. Mansour, Org. Prep. and Proc. Int., 1995, 27, 613.
- 6. A. M. Attia, G. H. Elgemeie, L. A. Shahada, Tetrahedron, 1997, 53, 17441.
- 7. A. M. Attia, G. H. Elgemeie, I. S. Alnaimi, Nucleosides Nucleotides, 1998, 17,1355.
- 8. J.L. Soto, C. Seoane, M.J. Rubio, J.M. Botija, Org. Prep. and Proc. Int., 1984, 16, 11.
- 9. G. H. Elgemeie, H. F. Zohdi, S. M. Sherif, Phosphorus, Sulfur and Silicon, 1990,54,215.
- 10. H. Vorbruggen, K. Krolikiewicz, B. Bennua, Chem. Ber., 1981, 114, 1234.
- 11. U. Niedballa, H. Vorbruggen, J. Org. Chem., 1974, 39, 3654.
- 12. H. Vorbruggen, G. Hofle, Chem. Ber., 1981, 114, 1256.

Received 1/29/99 Accepted 8/12/99